Skip to contents

Example data to initialize scheduled events for a population of 1600 nodes and demonstrate the SISe3 model.

Usage

data(events_SISe3)

Format

A data.frame

Details

Example data to initialize scheduled events (see SimInf_events) for a population of 1600 nodes and demonstrate the SISe3 model. The dataset contains 783773 events for 1600 nodes distributed over 4 * 365 days. The events are divided into three types: ‘Exit’ events remove individuals from the population (n = 182535), ‘Enter’ events add individuals to the population (n = 182685), ‘Internal transfer’ events move individuals between compartmens within one node e.g. ageing (n = 317081), and ‘External transfer’ events move individuals between nodes in the population (n = 101472). The vignette contains a detailed description of how scheduled events operate on a model.

Examples

## For reproducibility, call the set.seed() function and specify
## the number of threads to use. To use all available threads,
## remove the set_num_threads() call.
set.seed(123)
set_num_threads(1)

## Create an 'SISe3' model with 1600 nodes and initialize
## it to run over 4*365 days. Add one infected individual
## to the first node.
data("u0_SISe3", package = "SimInf")
data("events_SISe3", package = "SimInf")
u0_SISe3$I_1[1] <- 1
tspan <- seq(from = 1, to = 4*365, by = 1)
model <- SISe3(u0 = u0_SISe3, tspan = tspan, events = events_SISe3,
               phi = rep(0, nrow(u0_SISe3)), upsilon_1 = 1.8e-2,
               upsilon_2 = 1.8e-2, upsilon_3 = 1.8e-2,
               gamma_1 = 0.1, gamma_2 = 0.1, gamma_3 = 0.1,
               alpha = 1, beta_t1 = 1.0e-1, beta_t2 = 1.0e-1,
               beta_t3 = 1.25e-1, beta_t4 = 1.25e-1, end_t1 = 91,
               end_t2 = 182, end_t3 = 273, end_t4 = 365, epsilon = 0)

## Display the number of individuals affected by each event type
## per day.
plot(events(model))


## Run the model to generate a single stochastic trajectory.
result <- run(model)

## Summarize the trajectory. The summary includes the number of
## events by event type.
summary(result)
#> Model: SISe3
#> Number of nodes: 1600
#> 
#> Transitions
#> -----------
#>  S_1 -> upsilon_1*phi*S_1 -> I_1
#>  I_1 -> gamma_1*I_1 -> S_1
#>  S_2 -> upsilon_2*phi*S_2 -> I_2
#>  I_2 -> gamma_2*I_2 -> S_2
#>  S_3 -> upsilon_3*phi*S_3 -> I_3
#>  I_3 -> gamma_3*I_3 -> S_3
#> 
#> Global data
#> -----------
#>  Parameter Value
#>  upsilon_1 0.018
#>  upsilon_2 0.018
#>  upsilon_3 0.018
#>  gamma_1   0.100
#>  gamma_2   0.100
#>  gamma_3   0.100
#>  alpha     1.000
#>  beta_t1   0.100
#>  beta_t2   0.100
#>  beta_t3   0.125
#>  beta_t4   0.125
#>  epsilon   0.000
#> 
#> Local data
#> ----------
#>  Parameter Value
#>  end_t1     91  
#>  end_t2    182  
#>  end_t3    273  
#>  end_t4    365  
#> 
#> Scheduled events
#> ----------------
#>  Exit: 182535
#>  Enter: 182685
#>  Internal transfer: 317081
#>  External transfer: 101472
#> 
#> Network summary
#> ---------------
#>             Min. 1st Qu. Median Mean 3rd Qu. Max.
#>  Indegree:  40.0    57.0   62.0 62.1    68.0 90.0
#>  Outdegree: 36.0    57.0   62.0 62.1    67.0 89.0
#> 
#> Continuous state variables
#> --------------------------
#>          Min.  1st Qu.   Median     Mean  3rd Qu.     Max.
#>  phi 0.00e+00 0.00e+00 0.00e+00 8.92e-08 0.00e+00 1.88e-02
#> 
#> Compartments
#> ------------
#>          Min.  1st Qu.   Median     Mean  3rd Qu.     Max.
#>  S_1 0.00e+00 7.00e+00 9.00e+00 9.23e+00 1.20e+01 3.00e+01
#>  I_1 0.00e+00 0.00e+00 0.00e+00 1.28e-06 0.00e+00 1.00e+00
#>  S_2 0.00e+00 1.40e+01 1.80e+01 1.80e+01 2.20e+01 4.30e+01
#>  I_2 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00
#>  S_3 0.00e+00 7.50e+01 9.40e+01 9.73e+01 1.19e+02 2.06e+02
#>  I_3 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00