Package index
-
C_code()
- Extract the C code from a
SimInf_model
object
-
SEIR-class
- Definition of the ‘SEIR’ model
-
SEIR()
- Create an SEIR model
-
SIR-class
- Definition of the SIR model
-
SIR()
- Create an SIR model
-
SIS-class
- Definition of the SIS model
-
SIS()
- Create an SIS model
-
SISe-class
- Definition of the
SISe
model
-
SISe()
- Create a SISe model
-
SISe3-class
- Definition of the ‘SISe3’ model
-
SISe3()
- Create a
SISe3
model
-
SISe3_sp-class
- Definition of the ‘SISe3_sp’ model
-
SISe3_sp()
- Create an
SISe3_sp
model
-
SISe_sp-class
- Definition of the
SISe_sp
model
-
SISe_sp()
- Create a
SISe_sp
model
-
SimInf-package
SimInf
- A Framework for Data-Driven Stochastic Disease Spread Simulations
-
SimInf_abc-class
- Class
"SimInf_abc"
-
SimInf_events-class
- Class
"SimInf_events"
-
SimInf_events()
- Create a
SimInf_events
object
-
SimInf_indiv_events-class
- Class
"SimInf_indiv_events"
-
SimInf_model-class
- Class
"SimInf_model"
-
SimInf_model()
- Create a
SimInf_model
-
SimInf_pfilter-class
- Class
"SimInf_pfilter"
-
SimInf_pmcmc-class
- Class
"SimInf_pmcmc"
-
abc()
- Approximate Bayesian computation
-
as.data.frame(<SimInf_abc>)
- Coerce to data frame
-
as.data.frame(<SimInf_events>)
- Coerce events to a data frame
-
as.data.frame(<SimInf_indiv_events>)
- Coerce to data frame
-
boxplot(<SimInf_model>)
- Box plot of number of individuals in each compartment
-
continue_abc()
- Run more generations of ABC SMC
-
continue_pmcmc()
- Run more iterations of PMCMC
-
distance_matrix()
- Create a distance matrix between nodes for spatial models
-
edge_properties_to_matrix()
- Convert an edge list with properties to a matrix
-
events()
- Extract the events from a
SimInf_model
object
-
events_SEIR()
- Example data to initialize events for the ‘SEIR’ model
-
events_SIR()
- Example data to initialize events for the ‘SIR’ model
-
events_SIS()
- Example data to initialize events for the ‘SIS’ model
-
events_SISe()
- Example data to initialize events for the ‘SISe’ model
-
events_SISe3
- Example data to initialize events for the ‘SISe3’ model
-
`gdata<-`()
- Set a global data parameter for a
SimInf_model
object
-
gdata()
- Extract global data from a
SimInf_model
object
-
get_individuals()
- Extract individuals from
SimInf_indiv_events
-
indegree()
- Determine in-degree for each node in a model
-
individual_events()
- Individual events
-
ldata()
- Extract local data from a node
-
length(<SimInf_pmcmc>)
- Length of the MCMC chain
-
logLik(<SimInf_pfilter>)
- Log likelihood
-
mparse()
- Model parser to define new models to run in
SimInf
-
n_compartments()
- Determine the number of compartments in a model
-
n_generations()
- Determine the number of generations
-
n_nodes()
- Determine the number of nodes in a model
-
n_replicates()
- Determine the number of replicates in a model
-
node_events()
- Transform individual events to node events for a model
-
nodes
- Example data with spatial distribution of nodes
-
outdegree()
- Determine out-degree for each node in a model
-
package_skeleton()
- Create a package skeleton from a
SimInf_model
-
pairs(<SimInf_model>)
- Scatterplot of number of individuals in each compartment
-
pfilter()
- Bootstrap particle filter
-
plot(<SimInf_abc>)
- Display the ABC posterior distribution
-
plot(<SimInf_events>)
- Display the distribution of scheduled events over time
-
plot(<SimInf_indiv_events>)
- Display the distribution of individual events over time
-
plot(<SimInf_pfilter>)
- Diagnostic plot of a particle filter object
-
plot(<SimInf_pmcmc>)
- Display the PMCMC posterior distribution
-
plot(<SimInf_model>)
- Display the outcome from a simulated trajectory
-
pmcmc()
- Particle Markov chain Monte Carlo (PMCMC) algorithm
-
prevalence(<SimInf_model>)
- Calculate prevalence from a model object with trajectory data
-
prevalence(<SimInf_pfilter>)
- Extract prevalence from running a particle filter
-
prevalence(<SimInf_pmcmc>)
- Extract prevalence from fitting a PMCMC algorithm
-
prevalence()
- Generic function to calculate prevalence from trajectory data
-
`punchcard<-`()
- Set a template for where to record result during a simulation
-
run()
- Run the SimInf stochastic simulation algorithm
-
`select_matrix<-`()
- Set the select matrix for a
SimInf_model
object
-
select_matrix()
- Extract the select matrix from a
SimInf_model
object
-
set_num_threads()
- Specify the number of threads that SimInf should use
-
`shift_matrix<-`()
- Set the shift matrix for a
SimInf_model
object
-
shift_matrix()
- Extract the shift matrix from a
SimInf_model
object
-
show(<SimInf_abc>)
- Print summary of a
SimInf_abc
object
-
show(<SimInf_events>)
- Brief summary of
SimInf_events
-
show(<SimInf_indiv_events>)
- Print summary of a
SimInf_indiv_events
object
-
show(<SimInf_model>)
- Brief summary of
SimInf_model
-
show(<SimInf_pfilter>)
- Brief summary of a
SimInf_pfilter
object
-
show(<SimInf_pmcmc>)
- Brief summary of a
SimInf_pmcmc
object
-
summary(<SimInf_abc>)
- Detailed summary of a
SimInf_abc
object
-
summary(<SimInf_events>)
- Detailed summary of a
SimInf_events
object
-
summary(<SimInf_indiv_events>)
- Detailed summary of a
SimInf_indiv_events
object
-
summary(<SimInf_model>)
- Detailed summary of a
SimInf_model
object
-
summary(<SimInf_pfilter>)
- Detailed summary of a
SimInf_pfilter
object
-
summary(<SimInf_pmcmc>)
- Detailed summary of a
SimInf_pmcmc
object
-
trajectory(<SimInf_model>)
- Extract data from a simulated trajectory
-
trajectory(<SimInf_pfilter>)
- Extract filtered trajectory from running a particle filter
-
trajectory(<SimInf_pmcmc>)
- Extract filtered trajectories from fitting a PMCMC algorithm
-
trajectory()
- Generic function to extract data from a simulated trajectory
-
`u0<-`()
- Update the initial compartment state u0 in each node
-
u0()
- Get the initial compartment state
-
u0_SEIR()
- Example data to initialize the ‘SEIR’ model
-
u0_SIR()
- Example data to initialize the ‘SIR’ model
-
u0_SIS()
- Example data to initialize the ‘SIS’ model
-
u0_SISe()
- Example data to initialize the ‘SISe’ model
-
u0_SISe3
- Example data to initialize the ‘SISe3’ model
-
`v0<-`()
- Update the initial continuous state v0 in each node