Package index
-
C_code() - Extract the C code from a
SimInf_modelobject
-
SEIR-class - Definition of the ‘SEIR’ model
-
SEIR() - Create an SEIR model
-
SIR-class - Definition of the SIR model
-
SIR() - Create an SIR model
-
SIS-class - Definition of the SIS model
-
SIS() - Create an SIS model
-
SISe-class - Definition of the
SISemodel
-
SISe() - Create a SISe model
-
SISe3-class - Definition of the ‘SISe3’ model
-
SISe3() - Create a
SISe3model
-
SISe3_sp-class - Definition of the ‘SISe3_sp’ model
-
SISe3_sp() - Create an
SISe3_spmodel
-
SISe_sp-class - Definition of the
SISe_spmodel
-
SISe_sp() - Create a
SISe_spmodel
-
SimInf-packageSimInf - A Framework for Data-Driven Stochastic Disease Spread Simulations
-
SimInf_abc-class - Class
"SimInf_abc"
-
SimInf_events-class - Class
"SimInf_events"
-
SimInf_events() - Create a
SimInf_eventsobject
-
SimInf_individual_events-class - Class
"SimInf_individual_events"
-
SimInf_model-class - Class
"SimInf_model"
-
SimInf_model() - Create a
SimInf_model
-
SimInf_pfilter-class - Class
"SimInf_pfilter"
-
SimInf_pmcmc-class - Class
"SimInf_pmcmc"
-
abc() - Approximate Bayesian computation
-
add_spatial_coupling_to_ldata() - Add information about spatial coupling between nodes to 'ldata'
-
as.data.frame(<SimInf_abc>) - Coerce to data frame
-
as.data.frame(<SimInf_events>) - Coerce events to a data frame
-
as.data.frame(<SimInf_individual_events>) - Coerce to data frame
-
as.data.frame(<SimInf_pmcmc>) - Coerce to data frame
-
boxplot(<SimInf_model>) - Box plot of number of individuals in each compartment
-
continue_abc() - Run more generations of ABC SMC
-
continue_pmcmc() - Run more iterations of PMCMC
-
distance_matrix() - Create a distance matrix between nodes for spatial models
-
edge_properties_to_matrix() - Convert an edge list with properties to a matrix
-
events() - Extract the events from a
SimInf_modelobject
-
events_SEIR() - Example data to initialize events for the ‘SEIR’ model
-
events_SIR() - Example data to initialize events for the ‘SIR’ model
-
events_SIS() - Example data to initialize events for the ‘SIS’ model
-
events_SISe() - Example data to initialize events for the ‘SISe’ model
-
events_SISe3 - Example data to initialize events for the ‘SISe3’ model
-
`gdata<-`() - Set a global data parameter for a
SimInf_modelobject
-
gdata() - Extract global data from a
SimInf_modelobject
-
get_individuals() - Extract individuals from
SimInf_individual_events
-
indegree() - Determine in-degree for each node in a model
-
individual_events() - Individual events
-
lambertW0() - Lambert W0 function
-
ldata() - Extract local data from a node
-
length(<SimInf_pmcmc>) - Length of the MCMC chain
-
logLik(<SimInf_pfilter>) - Log likelihood
-
mparse() - Model parser to define new models to run in
SimInf
-
n_compartments() - Determine the number of compartments in a model
-
n_generations() - Determine the number of generations
-
n_nodes() - Determine the number of nodes in a model
-
n_replicates() - Determine the number of replicates in a model
-
node_events() - Transform individual events to node events for a model
-
nodes - Example data with spatial distribution of nodes
-
outdegree() - Determine out-degree for each node in a model
-
package_skeleton() - Create a package skeleton from a
SimInf_model
-
pairs(<SimInf_model>) - Scatterplot of number of individuals in each compartment
-
pfilter() - Bootstrap particle filter
-
plot(<SimInf_abc>) - Display the ABC posterior distribution
-
plot(<SimInf_events>) - Display the distribution of scheduled events over time
-
plot(<SimInf_individual_events>) - Display the distribution of individual events over time
-
plot(<SimInf_pfilter>) - Diagnostic plot of a particle filter object
-
plot(<SimInf_pmcmc>) - Display the PMCMC posterior distribution
-
plot(<SimInf_model>) - Display the outcome from a simulated trajectory
-
pmcmc() - Particle Markov chain Monte Carlo (PMCMC) algorithm
-
prevalence(<SimInf_model>) - Calculate prevalence from a model object with trajectory data
-
prevalence(<SimInf_pfilter>) - Extract prevalence from running a particle filter
-
prevalence(<SimInf_pmcmc>) - Extract prevalence from fitting a PMCMC algorithm
-
prevalence() - Generic function to calculate prevalence from trajectory data
-
`punchcard<-`() - Set a template for where to record result during a simulation
-
run() - Run the SimInf stochastic simulation algorithm
-
`select_matrix<-`() - Set the select matrix for a
SimInf_modelobject
-
select_matrix() - Extract the select matrix from a
SimInf_modelobject
-
set_num_threads() - Specify the number of threads that SimInf should use
-
`shift_matrix<-`() - Set the shift matrix for a
SimInf_modelobject
-
shift_matrix() - Extract the shift matrix from a
SimInf_modelobject
-
show(<SimInf_abc>) - Print summary of a
SimInf_abcobject
-
show(<SimInf_events>) - Brief summary of
SimInf_events
-
show(<SimInf_individual_events>) - Print summary of a
SimInf_individual_eventsobject
-
show(<SimInf_model>) - Brief summary of
SimInf_model
-
show(<SimInf_pfilter>) - Brief summary of a
SimInf_pfilterobject
-
show(<SimInf_pmcmc>) - Brief summary of a
SimInf_pmcmcobject
-
summary(<SimInf_abc>) - Detailed summary of a
SimInf_abcobject
-
summary(<SimInf_events>) - Detailed summary of a
SimInf_eventsobject
-
summary(<SimInf_individual_events>) - Detailed summary of a
SimInf_individual_eventsobject
-
summary(<SimInf_model>) - Detailed summary of a
SimInf_modelobject
-
summary(<SimInf_pfilter>) - Detailed summary of a
SimInf_pfilterobject
-
summary(<SimInf_pmcmc>) - Detailed summary of a
SimInf_pmcmcobject
-
trajectory(<SimInf_model>) - Extract data from a simulated trajectory
-
trajectory(<SimInf_pfilter>) - Extract filtered trajectory from running a particle filter
-
trajectory(<SimInf_pmcmc>) - Extract filtered trajectories from fitting a PMCMC algorithm
-
trajectory() - Generic function to extract data from a simulated trajectory
-
`u0<-`() - Update the initial compartment state u0 in each node
-
u0() - Get the initial compartment state
-
u0_SEIR() - Example data to initialize the ‘SEIR’ model
-
u0_SIR() - Example data to initialize the ‘SIR’ model
-
u0_SIS() - Example data to initialize the ‘SIS’ model
-
u0_SISe() - Example data to initialize the ‘SISe’ model
-
u0_SISe3 - Example data to initialize the ‘SISe3’ model
-
`v0<-`() - Update the initial continuous state v0 in each node