Skip to contents

All functions

C_code()
Extract the C code from a SimInf_model object
SEIR-class
Definition of the ‘SEIR’ model
SEIR()
Create an SEIR model
SIR-class
Definition of the SIR model
SIR()
Create an SIR model
SIS-class
Definition of the SIS model
SIS()
Create an SIS model
SISe-class
Definition of the SISe model
SISe()
Create a SISe model
SISe3-class
Definition of the ‘SISe3’ model
SISe3()
Create a SISe3 model
SISe3_sp-class
Definition of the ‘SISe3_sp’ model
SISe3_sp()
Create an SISe3_sp model
SISe_sp-class
Definition of the SISe_sp model
SISe_sp()
Create a SISe_sp model
SimInf-package SimInf
A Framework for Data-Driven Stochastic Disease Spread Simulations
SimInf_abc-class
Class "SimInf_abc"
SimInf_events-class
Class "SimInf_events"
SimInf_events()
Create a SimInf_events object
SimInf_indiv_events-class
Class "SimInf_indiv_events"
SimInf_model-class
Class "SimInf_model"
SimInf_model()
Create a SimInf_model
SimInf_pfilter-class
Class "SimInf_pfilter"
SimInf_pmcmc-class
Class "SimInf_pmcmc"
abc()
Approximate Bayesian computation
as.data.frame(<SimInf_abc>)
Coerce to data frame
as.data.frame(<SimInf_events>)
Coerce events to a data frame
as.data.frame(<SimInf_indiv_events>)
Coerce to data frame
as.data.frame(<SimInf_pmcmc>)
Coerce to data frame
boxplot(<SimInf_model>)
Box plot of number of individuals in each compartment
continue_abc()
Run more generations of ABC SMC
continue_pmcmc()
Run more iterations of PMCMC
distance_matrix()
Create a distance matrix between nodes for spatial models
edge_properties_to_matrix()
Convert an edge list with properties to a matrix
events()
Extract the events from a SimInf_model object
events_SEIR()
Example data to initialize events for the ‘SEIR’ model
events_SIR()
Example data to initialize events for the ‘SIR’ model
events_SIS()
Example data to initialize events for the ‘SIS’ model
events_SISe()
Example data to initialize events for the ‘SISe’ model
events_SISe3
Example data to initialize events for the ‘SISe3’ model
`gdata<-`()
Set a global data parameter for a SimInf_model object
gdata()
Extract global data from a SimInf_model object
get_individuals()
Extract individuals from SimInf_indiv_events
indegree()
Determine in-degree for each node in a model
individual_events()
Individual events
ldata()
Extract local data from a node
length(<SimInf_pmcmc>)
Length of the MCMC chain
logLik(<SimInf_pfilter>)
Log likelihood
mparse()
Model parser to define new models to run in SimInf
n_compartments()
Determine the number of compartments in a model
n_generations()
Determine the number of generations
n_nodes()
Determine the number of nodes in a model
n_replicates()
Determine the number of replicates in a model
node_events()
Transform individual events to node events for a model
nodes
Example data with spatial distribution of nodes
outdegree()
Determine out-degree for each node in a model
package_skeleton()
Create a package skeleton from a SimInf_model
pairs(<SimInf_model>)
Scatterplot of number of individuals in each compartment
pfilter()
Bootstrap particle filter
plot(<SimInf_abc>)
Display the ABC posterior distribution
plot(<SimInf_events>)
Display the distribution of scheduled events over time
plot(<SimInf_indiv_events>)
Display the distribution of individual events over time
plot(<SimInf_pfilter>)
Diagnostic plot of a particle filter object
plot(<SimInf_pmcmc>)
Display the PMCMC posterior distribution
plot(<SimInf_model>)
Display the outcome from a simulated trajectory
pmcmc()
Particle Markov chain Monte Carlo (PMCMC) algorithm
prevalence(<SimInf_model>)
Calculate prevalence from a model object with trajectory data
prevalence(<SimInf_pfilter>)
Extract prevalence from running a particle filter
prevalence(<SimInf_pmcmc>)
Extract prevalence from fitting a PMCMC algorithm
prevalence()
Generic function to calculate prevalence from trajectory data
`punchcard<-`()
Set a template for where to record result during a simulation
run()
Run the SimInf stochastic simulation algorithm
`select_matrix<-`()
Set the select matrix for a SimInf_model object
select_matrix()
Extract the select matrix from a SimInf_model object
set_num_threads()
Specify the number of threads that SimInf should use
`shift_matrix<-`()
Set the shift matrix for a SimInf_model object
shift_matrix()
Extract the shift matrix from a SimInf_model object
show(<SimInf_abc>)
Print summary of a SimInf_abc object
show(<SimInf_events>)
Brief summary of SimInf_events
show(<SimInf_indiv_events>)
Print summary of a SimInf_indiv_events object
show(<SimInf_model>)
Brief summary of SimInf_model
show(<SimInf_pfilter>)
Brief summary of a SimInf_pfilter object
show(<SimInf_pmcmc>)
Brief summary of a SimInf_pmcmc object
summary(<SimInf_abc>)
Detailed summary of a SimInf_abc object
summary(<SimInf_events>)
Detailed summary of a SimInf_events object
summary(<SimInf_indiv_events>)
Detailed summary of a SimInf_indiv_events object
summary(<SimInf_model>)
Detailed summary of a SimInf_model object
summary(<SimInf_pfilter>)
Detailed summary of a SimInf_pfilter object
summary(<SimInf_pmcmc>)
Detailed summary of a SimInf_pmcmc object
trajectory(<SimInf_model>)
Extract data from a simulated trajectory
trajectory(<SimInf_pfilter>)
Extract filtered trajectory from running a particle filter
trajectory(<SimInf_pmcmc>)
Extract filtered trajectories from fitting a PMCMC algorithm
trajectory()
Generic function to extract data from a simulated trajectory
`u0<-`()
Update the initial compartment state u0 in each node
u0()
Get the initial compartment state
u0_SEIR()
Example data to initialize the ‘SEIR’ model
u0_SIR()
Example data to initialize the ‘SIR’ model
u0_SIS()
Example data to initialize the ‘SIS’ model
u0_SISe()
Example data to initialize the ‘SISe’ model
u0_SISe3
Example data to initialize the ‘SISe3’ model
`v0<-`()
Update the initial continuous state v0 in each node